FICTORIAL BIOLOGY OF A LEAFCUTTER BEE

Magacisile floyysobyga Smith

By Taklton RAyment, r,R.z.s.

Thie genus Meyartite comtains two grousts, the ane pinking leaves and the other foodellios in. Cesill and wax, Moreover, is the first group the abdomen is shosve?-shaped, as in M. zhrysopyga Sme white in the second it is tonger and paralle-sided, as in 19 . prillibersis Raym. The famuls lisench naturalist, Jean Hemri Fghre, regretied that bers were not elassified accordiug to their trade rather than their uniform. This concept is evidently shareit in Prof. T. D. A Cockerell, who has placod those spocies that model in wax and resin in his new subgentus Hackeriapis.

Hymennoterists agree that bees evolved from wasns, and, fitcr making: thousands of dissections, the author coucludes that there can be no other perdict. The evidence afforded by hody-stencrure is supportosi by a study of the insects' trabits. The teal-cutting bees are praticient in the art oi pinking or cutting leaves, and are abte to measure rizes accurately 50 is th prorluce truly artistic work. Size is not determined mechanically, for dimensions vary according to circumstances.

1 was delighted to discover one wasn, the graceful red and black Discoolins melesiastions Raym., certainly of the Odyneri, the mud-dauber family, yet departing irom her traditional trade to jink the trifoliate Taves of the "Ruming Postman", Kentedye Arostrata. Admittedly, she lacks the artistry of the leaf-cutting bees, for lhere are no circles and true ellipses, but enty "asged pieces slashed out haphazardly. These are then chewed into a fine vegetable putty and used in the forming of cell-divisions. Thes is crude work perbaps, but it should be noted that many members of Megachile still plaster a wad of similar "putty" to seal the door of their homte.
The accorapiriying set of illustrations shows the interesting biology of Meachile choryoprysa, a true leaf-cutter bee. The story told by these pictures is as tollows:
1-Dorsal vicw of fersiale pups before shedditsg the fifth or final pellicle on Feb. 23, 1953. z-Ventral view; the compotid eyes are beginning to colour purple. 3-The development of the mouth-parts; note the long glossa. 4-Lateral view of the fryagination of the appal segments of the female abdomen. 5-Each of the segtacnts of the flagellyis bas a large tubercle. 6-Through the wing-pad of the pupa may be soen the developing netvures insite. 7-The firth tarsal segment shaws the first signs of bifurcation. 8ralateral view of some of the ridged segments of the fully-developed larya showing the tubercles before the fourth pelicle was cast on Jan. 20, 1953. 9-The amber chitinons claw was visible throagh the fifth pellicle on Felb. 14. 1953. j0-Dorsal view of the invagination of the abdonen of the female showing the two embeyonic gonostyli. 11-Posterion tibia showing the developing calcar; the strigilis of the anterior leg is very sumilar at this stage. 12-Lateral vies of the mouth-pat1s; the mandible was being gradtally chitinized inside the skit. 13-Looking into the cast pellicie (the foutth) from the front: the dark larval mandibles were attached to the pelliede. $14.15 \& 16$-Even the dry pollicle is nut without beauty. 17-Portion of a Jorig trackeal tube was shed with the pellicle; interior of the spiracle. 18 -There are abont four lines of serrations jnside the mouth of the spiracle 19-Exterior of one of the spitactes cast of with tie fourth peliche on Jan. 20, 1953, 20-All the hairs of the larva are attached to the dry pellicle 21-Two of the hairs more highly magnifief; they are sensory in function, with a nerve along the centre, 22 -Several clliptical piaces of lraf were used to build the walls of the cells 23-Four or five ritrular pieces form

the divisions between the cells. 24 -Gtaphic section of a cell with the pollen-pudding and an egg on approx. Feb. 1, 1952. 25-There were two tufts of appressed hair on the scotellum, under the fith pelliele. 26-Elements of a sper on the posterior coxa; the coxae in Megackite are often spined. The bees emerged from their cells oft the morning of February 26,1953 , therefore, 391 days are required by this species for complete development from egg to imago.

